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Abstract
By using a decomposition elimination method for Green’s function matrix, we explore the
effects of both disorder and contact scattering on electronic transport in metallic bilayer
graphene nanoribbons (BGNRs) and related structures, in the limit of phase-coherent transport.
Due to the inter-layer interaction, a conductance gap is observed at Fermi energy in primary
metallic zigzag BGNRs. It is found that the fashion of the conductance variations with disorder
depends strongly on the type of disorder and contact scattering. In the edge disordered BGNR,
the conductance decreases monotonically with the disorder increasing and finally tends to
disappear, while a nonmonotonic behavior is obtained in the single-layer disordered BGNR,
first decreasing then increasing. In the presence of contact scattering, especially, an abnormal
growth of the conductance appears at much lower disorder in both edge and single-layer
disordered BGNRs, which may be due to the destruction of coherence by the introduction of
disorder.

1. Introduction

Recently, there have been many experimental reports on the
production of few-layer graphene (monolayer, bilayer), that
enables us to access its exotic electronic properties [1, 2].
Monolayer graphene, owing to the unique honeycomb
structures, exhibits an unconventional quantum Hall effect.
Some new phenomena had been predicted, such as the
Josephson effect [3], the photon-assisted electron transport [4],
composite Dirac fermions [5], the n–p junction [6], the
fractional quantum Hall effect [7], and the spin–orbit gap [8].
For bilayer graphene, some unexpected properties were found
to be essentially different from those of a monolayer [9, 10].
For example, there exist anomalies in its integer quantum Hall
effect and minimal conductivity on the order of e2/h.

More recently attention has turned to graphene nanorib-
bons (GNRs), which can be realized either by cutting [11]
mechanically exfoliated graphenes [12], or by patterning epi-
taxially grown graphenes [13, 14]. Based on the simple
tight-binding model or Dirac’s equation, the electronic struc-
ture [15, 16] and transport properties [17, 18] of single-layer
GNRs (SGNRs) were explored. It was shown that SGNRs with

zigzag shaped edge are metallic, and that SGNRs with arm-
chair shaped edge can be either metallic or semiconducting
depending on their widths. Due to recent progress in prepar-
ing few-layer graphene on conventional device setups, multi-
layer GNRs (MGNRs) of various widths can be realized in the
same ways. In a bilayer GNR (BGNR), there exists a relatively
weak inter-layer interaction, similar to that in multi-walled or
in bundled nanotubes [19–21]. Electronic conduction through
a BGNR is complicated by inter-layer interactions and possi-
ble wavefunction interference between electronic states on the
different layers. Some new characteristics may be expected on
the electronic structure and transport in such BGNRs.

For a BGNR, there may exist various types of disorder.
One type of disorder is edge disorder. Due to two open
edges on one side, a BGNR can be usually passivated by
hydrogen and/or other atoms at its open edges. As a result,
the σ bonds between hydrogen and carbon, and the on-site
energies at the edge carbons would be different from those
in the middle of the BGNRs. The bonding distances between
carbon atoms at the edges change accordingly. Another type
of disorder is single-layer disorder. In this case, dopant atoms
are distributed uniformly for the disordered layer and the other
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Figure 1. (a) Geometry of a zigzag BGNR device (N = 4). (b) The
interaction integrals between atoms, indicated by γ0, γ1, γ2 and γ3.

layer is thought to be perfect. How about the influence of both
the edge and single-layer disorder upon the conductance? This
is an interesting problem in the applications of GNR devices.
For the conductance measurement and device applications,
in addition, the studied system must be connected to two
electronic reservoirs. When electrons transmit through the
central sample, each interface between a lead and the central
sample may be regard as contact barrier existing there [22].
Therefore, the influence of both the disorder and the contact
scattering on conductance should be considered.

By using a decomposition elimination method for Green’s
function, in this paper we have performed simulations to assess
the effects of both the disorder and the contact scattering on
the conductance of BGNRs. Our calculations show that the
inter-layer interaction plays an important role in determining
the transport properties of BGNRs. Importantly, it is found
that the fashion of the conductance variations with disorder
depends strongly on the type of disorder and contact scattering.

2. Model and method

The AB-stacked BGNR is shown in figure 1, which is held
by the van der Waals forces in the AB sequence along the z
axis. The distance between the two layers is 3.35 Å. The
BGNR device system is composed of a central sample with
P unit cells, connected to two semi-infinite leads, as shown in
figure 1(a). If the BGNRs are commensurate, the translational
symmetry can be still remained. Here we focus on the primary
metallic BGNRs. For simplicity, the central sample is taken to
be a commensurate zigzag edge BGNR, and the two leads are
assumed to be made of the same kind of BGNR. The sample
length L is then given by L = P × L0 with L0 the unit cell
length.

The BGNR is described by a tight-binding model with one
π electron per atom. In the absence of edge disorder, the on-
site energy εi is set to be the Fermi energy EF. The values
of hopping integrals are taken from those of the graphene
bilayer [23], i.e. γ0 = 2.9 eV, γ1 = 0.3 eV, and γ2 = 0.12 eV,
γ3 = 0.1 eV, as indicated in figure 1(b). In the presence of edge
disorder, the on-site energies εi are randomly distributed within
the interval [−ξ , ξ ] only for the edge atoms of the BGNR.
In the single-layer disordered BGNR, the random values are
distributed within the interval [−ξ , ξ ] for the disordered layer
and the on-site energies are taken to be EF for the ordered layer.
To model the barrier potential at the lead contact, the nonzero
site energies u1 and u2 are assumed for the interface atoms, as

in [22]. For simplicity, we put the same values of u1 and u2 for
the upper and lower layers of graphene.

The transmission coefficient between the left and right
leads can be calculated by [24–28]

T = Tr(�LGr�RGa), (1)

where �L,R are the coupling of the device to the left and
right leads. Gr,a are the retarded and advanced Green’s
function matrices of the device. Based on Landauer theory,
the conductance G through the central sample is given by
G = (2e2/h)T at zero temperature.

Based on the generalized Landauer approach, the
tunneling current at a finite temperature is given by

I = 2e

h̄

∫
dET (E)

[
f1(E − uL) − f2(E − uR)

]
, (2)

where the factor of 2 accounts for degeneracy; f1(E − uL)

and f2(E − u R) are the Fermi energy functions of the waves
incident from the two contacts to the device. Note that
in the present work we calculate only the phase-coherent
transmission coefficient. The effect of electron–phonon
interaction is neglected and the temperature dependence is only
via the Fermi factors of electrons.

Close to equilibrium (uL ≈ u R ≈ EF), the conductance
can be obtained from equation (2) by

G(V ≈ 0, T ) = 2e2

h

∫
T (E)

(
−∂ f (E − EF)

∂ E

)
dE, (3)

with a zero bias voltage (V ≈ 0).
The key of the problem is to evaluate the transmission

coefficients of interest. To calculate effectively the
conductance of a much larger sample, a decomposition
elimination method for Green’s function matrix is newly
developed by Xu et al [28]. By using the method, we
can calculate effectively the conductance of a much longer
disordered BGNR system.

3. Results and discussion

As a typical example, we consider only the commensurate
zigzag BGNR molecular device. The central sample contains
P primitive unit cells (P = 203–1626), of which L ≈ 50–
400 nm is comparable to the length of a real system measured
experimentally.

To explore the effects of both edge disorder and contact
scattering, in figure 2 we show the conductance of the edge
disordered zigzag BGNR (N = 14) in (a) the absence and (b)
the presence of the contact scattering. In the absence of contact
scattering (u1 = u2 = 0), it is seen from figure 2(a) that the
conductance of the perfect BGNR (ξ = 0) exhibits a perfect
step-like feature with two units of quantum conductance, due to
two open channels. Also, a small conductance gap is observed,
a metal–semiconductor transition existing there. It is the inter-
layer interaction that induces an energy gap, leading to a
conductance gap [29]. Therefore, the inter-layer interaction
plays an important role in determining the electronic structure
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Figure 2. Conductance versus energy in (a) the absence and (b) the
presence of a contact barrier.

and thus the transport properties of BGNRs, which should
be considered to explore the performance of GNR devices.
For the edge disordered BGNR, the conductance is averagely
decreased, which is attributed to the mismatch in the energies
of the resonances by the disorder. Some resonance peaks
are created by the disorder. From figure 2(a), importantly, it
is found that the conductance gap is broadened to be about
0.69 eV at ξ = 1 eV, much larger than that at ξ = 0. This may
be due to the fact that the electrons at about EF are localized
at the ribbon edges with almost zero group velocity, just as
in a zigzag SGNR [10, 17]. The edge disorder induces the
localization of the electrons at the ribbon edges, leading to a
large conductance gap at about EF. This means that some new
characteristic of the conductance can be expected, especially at
low energy and low temperature.

In the presence of contact scattering (u1 = 1.0 eV,
u2 = 6.0 eV), as expected, an overall decrease of conductance
is observed from figure 2(b) even at ξ = 0, due to the
contact reflection. Also, it is found that the conductance
oscillates between 0 and 4e2/h for −0.88 eV � E �
0.88 eV. The rapid conductance fluctuations are superimposed
on a slow fluctuation background, similar to that in a single
wall nanotube [30]. Both the rapid and slow conductance
fluctuations may be attributed to antiresonance of an incoming
channel with beating standing waves in the central sample
region. Therefore, it is shown that the contact scattering cannot
be neglected to explore the performance of the GNR devices.

At high temperature, phonon scattering plays an important
role in determining electronic transport, while it is not
significant at low temperature. In a conductance experiment,
the effect of the temperature should be considered. In the
present work, we calculate only the phase-coherent transport
(the effect of electron–phonon interaction is neglected). In
figure 3, we show the conductance versus the Fermi energy
at various temperatures. In equilibrium, the ability to vary
the Fermi energy had been demonstrated experimentally by
changing the gate voltage [31]. In the absence of contact
scattering, one can clearly see from figure 3(a) that the
conductance of the perfect BGNR is quantized at both low

Figure 3. Conductance versus Fermi energy in (a) the absence and
(b) the presence of a contact barrier.

and high temperatures, while the conductance step is smoothed
at high temperature. Also due to the inter-layer interaction,
a small conductance gap is observed at low temperature, a
metal–semiconductor transition existing at about EF = 0.
Interestingly, the small gap disappears at high temperature,
no transition existing there. This is because the electronic
transport occurs over a few kBT around EF. In the presence of
edge disorder (ξ = 1 eV), the whole conductance is decreased,
and a large conductance gap appears there, due to the Anderson
localization induced by the disorder. At low temperature, the
conductance fluctuations are observed, due to the quasibound
resonances in the disordered region, while such conductance
fluctuations are averaged out at high temperature. For an
almost zero group velocity, a series of conductance dips exists
at the beginning of the next subband [27]. As a result, the
conductance steps are evolved into some plano-convex peaks.

In the presence of contact scattering (u1 = 1 eV and
u2 = 6 eV), it can be seen from figure 3(b) that at low
temperature the whole conductance decreases even at ξ = 0,
due to the contact reflection. Also, it is observed that the slow
conductance fluctuations are superimposed on the rapid ones.
Such fluctuations had been observed in a single wall carbon
nanotube [30], which arise from the quantum interference
by the contact reflection [22]. At higher temperature (T =
300 K), interestingly, there appear some conductance peaks
even for perfect BGNRs (ξ = 0) due to the quantum
interference, while the rapid conductance fluctuations are
smoothed by the temperature. The results show the importance
of the contact scattering, leading to the quantum interference
and thus the conductance fluctuations.

In the presence of both edge disorder (ξ = 1 eV) and
contact scattering (u1 = 1 eV and u2 = 6 eV), in addition,
the results are present in figure 3(b), which are very similar
to those in the absence of contact scattering. Importantly,
new conductance peaks are observed on a conductance plateau,
induced mainly by the disorder. This further shows that both
the edge disorder and contact scattering play an important
role in determining the transport properties of BGNRs, which
should be taken into account in the application of BGNR
devices.
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Figure 4. Average conductance 〈G〉 of a zigzag BGNR (N = 14) as
a function of disorder strength in (a) the absence and (b) the presence
of a contact barrier.

For the control of carrier mobility in BGNRs, we further
calculate in figure 4 the average conductance 〈G〉 versus edge
disorder strength in (a) the absence and (b) presence of the
contact scattering. The conductance is averaged over more
than 200 disorder configurations. To explore the influence of
various disorder, the result of single-layer disordered BGNR
is also presented. At the energy E = 0.29 eV, it is found
from figure 4(a) that in the absence of contact scattering the
average conductance of the edge disordered BGNR drastically
decreases with disorder at ξ < ξC ≈ 1 eV and finally
tends to disappear at ξ > ξC. The disappearance of
conductance may contribute to the disorder induced energy
gap and thus a zero conductance in the gap. In the case of
single-layer disordered BGNR, the system behaves remarkably
differently from edge disordered BGNR. A localization/quasi-

delocalization transition is observed at critical disorder (ξC =
4 eV). In the regime of stronger disorder (ξ > ξC), the average
conductance increases with disorder, while it decreases in the
regime of weaker disorder (ξ < ξC). Even in the presence
of the contact scattering, a similar transition is also obtained,
independent of the values of u1 and u2. Such transitions
had been found in shell-doped nanowires and order–disorder
separated quantum films [32, 33], which can be understood by
the same consideration. Therefore, the conductance variations
with disorder may indicate the types of disorder, and thus
determine the presence of the edge disorder or the single-layer
disorder in BGNR systems.

In the presence of contact scattering, especially, an
abnormal growth of the conductance is obtained from
figure 4(b) at much lower disorder strength. This behavior
can be understood by the following consideration. In the
absence of disorder, these energies correspond to the lower and
even minimal conductance due to the quantum interference.
For such energies, the introduction of disorder destroys the
coherence, which leads spontaneously to a little increase of the
lower and minimal conductance. Therefore, it is shown that the
electron transport in GNR devices can be controlled through
modulation of the disorder strength.

To clarify the conduction mechanism in the edge
disordered BGNRs, we further study the localization length
L0 of the electrons. It is well known that in an infinite 1D
system all states are localized even for weak disorder. The
conductance is expected to decrease exponentially with length,
G = G0 exp(−|L|/L0) [27, 34]. In figure 5, we present the
average conductance 〈G〉 versus length L at lower energy (E =
0.29 eV) both in (a) the absence and (b) the presence of contact
scattering. From figure 5(a), it is shown that in the absence
of contact scattering the average conductance at various ξ

depends strongly on the sample length, decreasing with L
increasing. From a more careful analysis, it is found that the

Figure 5. Average conductance 〈G〉 of the zigzag BGNR (N = 14) as a function of length L at E = 0.29 eV with various disorder strengths
in (a) the absence and (b) the presence of a contact barrier.
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data of 〈G〉 versus L are well fitted to G = G0 exp(−L/L0).
The localization length L0 is obtained to be 1476.25, 714.29
and 112.87 Å, respectively, corresponding to the disorder
strength of 0.2, 0.4 and 0.6 eV. It is shown that L0 is decreased
with edge disorder strength, indicating a localization (L0 = 0)
at large enough ξ . In the presence of contact scattering,
in figure 5(b), the average conductance 〈G〉 is decreased,
lower than that in the absence of contact scattering, which is
attributed to the contact reflection. Interestingly, it is found that
the average conductance 〈G〉 periodically oscillates with L at
small disorder strength. Even at ξ = 0 eV such an oscillatory
behavior is obtained, due to the quantum interference by
the contact reflection. Similar behavior has always been
observed in carbon nanotube devices [22]. At larger disorder
(ξ = 0.6 eV), however, the disorder scattering suppresses
the effect of contact reflection, no oscillation appearing there.
The average conductance 〈G〉 declines exponentially with L
increasing, and L0 is obtained to be 124.22 Å. Obviously,
the contact reflection strengthens the interference, but the
edge disorder scattering destroys the interference. Both of
them together determine the appearance and/or disappearance
of the oscillations, which may give an implication for the
understanding of the experimental observation.

4. Conclusion

We calculate the phase-coherent transmission through zigzag
BGNR that can include the effect of semi-infinite leads and
can handle many defects and junctions with relative ease.
It is shown that the conductance variation with disorder
depends strongly on the type of disorder and contact scattering.
In the edge disordered BGNR, the conductance decreases
monotonically and tends to disappear, while a nonmonotonic
behavior is observed in single-layer disordered BGNR, first
decreasing then increasing. In the presence of contact
scattering, an abnormal growth of the conductance is obtained
at much lower disorder strength. These results are useful for
better understanding the properties of BGNR, which could
open up new possibilities for the design and application of the
BGNR molecular devices and device wiring.
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